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Abstract—In this paper, we investigate the achievable semantic
secrecy rate of existing lattice coding schemes, proposed in [6],
for both the mod-Λ Gaussian wiretap and the Gaussian wiretap
channels. For both channels, we propose new upper bounds on
the amount of leaked information which provide milder sufficient
conditions to achieve semantic secrecy. These upper bounds show
that the lattice coding schemes in [6] can achieve the secrecy
capacity to within 1

2
ln e/2 nat for the mod-Λ Gaussian and

to within 1
2
(1 − ln (1 + SNRe

SNRe+1
)) nat for the Gaussian wiretap

channels where SNRe is the signal-to-noise ratio of Eve.

I. INTRODUCTION

In [9], Wyner introduced the Wiretap channel, where Alice
wishes to communicate a message to the legitimate receiver
(Bob) over a channel (denoted by (X ,Y, pY n|Xn(y|x))),
while it’s messages are being eavesdropper by Eve through
another channel (denoted by (X ,Z, pZn|Xn(z|x))). A wire-
tap code for the wiretap channel (X ,Y,Z, pY n|Xn , pZn|Xn)
consists of the following
• a message set Mn from which a message is chosen

randomly according to a distribution pM ;
• a stochastic encoding function φn : Mn → Xn;
• a decoding function ψn : Yn →Mn.

Any wiretap coding scheme should satisfy simultaneously
two conditions, namely reliability and security. The reliability
condition is that Bob can decode the message correctly as
the code length n goes to infinity. The security condition is
characterized by the mutual information between the message
M and Eve’s channel output Zn. The weak security condition
is defined by limn→∞

I(M,Zn)
n → 0. Motivated by the fact

that the weak secrecy condition is not appropriate for some
applications, Csiszar in [3] introduced the strong secrecy
condition, given by limn→∞ I(M,Zn) = 0. In the notation
of strong secrecy, uniform distribution of the message is often
assumed. Since assuming that messages are a priori uniform
is completely unacceptable in cryptography, the notation of
semantic security has been proposed which requires that it is
asymptotically impossible to guess any function of message
better than to guess it without considering Zn at all [2],
and it is shown that strong secrecy for any message distri-
bution implies semantic security. The maximum amount of
information that Alice can transmit to Bob while satisfying
both of reliability and security conditions is called the secrecy
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capacity. While the secrecy capacity of many channels has
been extensively studied, the problem of wiretap code design
for semantic secrecy has assumed interest in recent years ([7]
and [1] for the case of discrete memoryless channels, and
[10] for the case of modulo lattice channel). For the Gaussian
wiretap channel, to best of our knowledge, a coding scheme
which can achieve the semantic secrecy capacity has not been
yet proposed. In [8], it is shown that the coding scheme
of [1] can achieve the strong secrecy capacity of Gaussian
wiretap channel, and in [6], the proposed lattice coding scheme
can achieves rates within 1/2 nats of secrecy capacity under
semantic security criterion. In this work, we consider the
lattice coding scheme proposed in [6], and we provide tighter
upper bounds on the amount of leaked information (Theorem 1
for the case of modulo lattice channel and Theorem 3 for
the case of Gaussian channel). Using these bounds, we show
that the lattice coding scheme in [6] can achieve rates within
1
2 ln (e/2) of the secrecy capacity of the mod-Λ Gaussian
wiretap channel and within 1

2 (1 − ln (1 + SNRe
1+SNRe

)) of the
secrecy capacity of the Gaussian wiretap channel under the
semantic security criterion.

A. The wiretap channel

The achievable semantic secrecy rate for a continuous
channel is defined as follows.

Definition 1. A rate R
def
= 1

n ln |Mn| is an achievable
semantic secrecy rate if there exists a sequence of (φn, ψn)
encoders and decoders such that

• Reliability: limn→∞ Pr(M 6= ψn(Y n)) = 0, where M is
the random variable denoting the transmitted message;

• Semantic secrecy: limn→∞ I(M,Zn) = 0 for all mes-
sage distributions;

• Power constraint: ∀m ∈Mn ,
1
nE[‖φn(m)‖2] ≤ P .

The following lemma is essential to satisfy the semantic
secrecy condition. This lemma states that if the conditional
distributions of the channel output signals for different mes-
sages are very close to a given distribution, the amount of
leaked information would be negligible.

Lemma 1 ([6, Lemma 2]). Assume that for any n, there exists
a density function qZn in Rn such that DTV(pZn|M=m, qZn) ≤
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εn
1 for all m ∈Mn. Then we have

I(M,Zn) ≤ 2nεnR− 2εn ln(2εn) . (1)

B. Preliminaries on Lattices

A n-dimensional lattice Λ is a discrete subgroup of Rn,
and can be characterized by a set of linearly independent
generators B = {bj , 1 ≤ j ≤ n} such that Λ is the set
of all integer linear combinations of the generators: Λ =
{Bx|x ∈ Zn}. The dual lattice Λ∗ of a lattice Λ is defined by:
Λ∗ = {u ∈ Rn|< u, λ >∈ Z ,∀λ ∈ Λ}. A bounded region
R(Λ) ∈ Rn is called a fundamental region of Λ if every
element of Rn can be written uniquely as the sum of a lattice
point from Λ and an element from R. The nearest-neighbor
quantizer and the modulo lattice operators are defined as

QΛ(x)
def
= arg min

λ∈Λ
‖x− λ‖ ,

xmod Λ
def
= x−QΛ(x) ,

respectively. The Voronoi cell of Λ, one fundamental region
of lattice Λ, is defined by V(Λ) = {x ∈ Rn|QΛ(x) = 0},
and it’s volume is denoted by V (Λ). For any σ > 0 and
any lattice Λ, the volume-to-noise ratio (VNR) is defined as

γΛ(σ)
def
= V (Λ)2/n

σ2 . For any τ > 0, the Theta series of lattice

Λ is defined as: ΘΛ(τ)
def
=

∑
λ∈Λ e

−πτ‖λ‖2 .
A sequence of lattices Λn are good for Quantizaion if
limn→∞

∫
V ‖x‖

2dx
nV 1+2/n = 1

2πe . Also, a sequence of lattices Λn

is AWGN-good if the probability that an iid Gaussian vector
with variance σ2 falls outside R(Λ) vanishes as long as
γΛ(σ) < 2π.

C. Lattice Gaussian Distribution

For any positive σ and c ∈ Rn, we denote the contin-
uous Gaussian distribution of variance σ2 centered at c by

fσ,c(x) = 1
(2πσ2)n/2

e−
‖x−c‖2

2σ2 . Another continuous distribu-
tion, called Λ-folded Gaussian distribution, is given by

fσ,Λ(x) =
∑
λ∈Λ

fσ,λ(x) .

Also, we consider the Lattice Gaussian distribution

DΛ,σ,c(x) =
fσ,c(x)

fσ,c(Λ)
,∀x ∈ Λ ,

where fσ,c(Λ)
def
=

∑
λ fσ,c(λ).

D. Flatness Factor

For any lattice Λ and any σ, the flatness factor is defined
by

εΛ(σ)
def
= (

γΛ(σ)

2π
)n/2ΘΛ(

1

2πσ2
)− 1 , (2)

1For any two distributions f and g defined on a common domain R, the
total variation distance is defined by DTV(f, g) =

∫
R|f(z)− g(z)| dz.

and quantifies the maximum difference between the Λ-folded
Gaussian distribution and the Uniform distribution over R(Λ),
i.e.,

εΛ(σ) = max
x∈R
| fσ,Λ(x)

1/V (Λ)
− 1| . (3)

In the rest of paper, we provide upper bounds on I(M,Zn) in
terms of the flatness factor. The following lemma guarantees
the existence of lattices in Rn whose flatness factors vanish
exponentially as n→∞.

Lemma 2 ([6, Theorem 1]). For any σ, there exists a sequence
of lattices Λ such that εΛ(σ)→ 0 exponentially provided that
V (Λ)2/n

σ2 < 2π.

II. MOD-Λ GAUSSIAN WIRETAP CHANNEL

In this section, we consider the mod-Λ Gaussian wiretap
channel where both legitimate and eavesdropper channels are
mod-Λ channels. For a given nested chain of n-dimensional
lattices Λs ⊂ Λe ⊂ Λb, the channel input Xn is restricted
to the V(Λs), and the outputs Y n and Zn of legitimate and
eavesdropper are given by

Y n = [Xn +Nn
b ]mod Λs ,

Zn = [Xn +Nn
e ]mod Λs ,

where Nb and Ne are n-dimensional Gaussian vectors with
zero mean and variance σ2

b and σ2
e respectively. We denote

R = 1
n ln (V (Λe)/V (Λb)) and R

′
= 1

n ln (V (Λs)/V (Λe)).
The nested lattice encoding for the mod−Λ Gaussian wiretap
channel is as follows. For the given message set Mn =
{1, · · · , enR}, let φ : M → Λb/Λe be a one-to-one function
which associates each message m ∈Mn to a coset represen-
tative λm ∈ Λb ∩ R(Λe). To encode the message m, Alice
samples a lattice point λ ∈ Λe ∩ V(Λs) according to the
uniform distribution and transmits λ+λm. We set σ2(Λs) = P
to asymptotically satisfy the power constraint.

A. Secrecy

To derive an upper bound on the amount of leaked infor-
mation to Eve, we need an upper bound on DTV between
pZn|M (.|m) and a fixed distribution qZn(.) for all m ∈ Mn.
First, we note that

PZn|M=m(z) =
1

enR
′

∑
λ̄∈Λe/Λs

f̄λ̄(z) ,

where f̄λ̄(z)
def
=

∑
λ∈Λe

fσe,λm(z− λ)1R(λ̄)(z). In the
following theorem, we provide an upper bound on
DTV(f̄λ̄, UR(Λs)), where UR(Λs) is the uniform distribution
on R(Λs).

Theorem 1. For any c ∈ Rn and any n-dimensional lattice
Λ, let f̄ be the PDF of the distribution over R(Λ) defined by
fσ,c modR(Λ). Then we have

DTV(f̄ , UR(Λ)) ≤
√
εΛ(
√

2σ) (4)
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Proof.

DTV(f̄(z), 1/V )
(a)

≤ [

∫
R(Λ)

|f̄(z)− 1/V |2

1/V
dz]1/2

=

√
V

∫
R(Λ)

f̄2(z) dz− 2

∫
R(Λ)

f̄(z) dz + 1 ,

(5)

where (a) follows from the Cauchy-Schwarz inequality. In the
rest of proof, we calculate the two above integrals

∫
R(Λ)

f̄(z)

and
∫
R(Λ)

f̄2(z). We note that

f̄(z) =
∑
λ

fσ,λ(z− c)1R(Λ)(z)

= fσ,Λ(z− c)1R(Λ)(z)

The Fourier expansion of fσ,Λ(z− c) gives us [5]

fσ,Λ(z− c)

=
1

V

∑
λ∗∈Λ∗

e−2π2σ2‖λ∗‖2e−2πi<c,λ∗>e−2πi<z,λ∗>

(6)

We have∫
R(Λ)

f̄(z) dz =

∫
R(Λ)

fσ,Λ(z− c)1R(Λ) dz

=
1

V

∑
λ∗∈Λ∗

e−2π2σ2‖λ∗‖2e−2πi<c,λ∗>

∫
R(Λ)

e−2πi<z,λ∗> dz

(a)
= 1 (7)

where (a) follows from

1

V

∫
R(Λ)

e−2πi<z,λ∗> dz = δλ∗ , (8)

where δλ∗ is the delta function δλ∗ = {1, ifλ∗ =
0, 0, otherwise}. Now, we turn to

∫
f̄2(z) dz. We have∫

R(Λ)

f̄2(z) dz =

∫
R(Λ)

f2
σ,Λ(z− c) dz .

Expansion of f2
σ,Λ(z− c) gives us∫

R(Λ)

f2
σ,Λ(z− c) dz = 1/V + 2/V 2

× (
∑
λ∗ 6=0

e−2π2σ2‖λ∗‖2e−2πi<c,λ∗>

∫
R(Λ)

e−2πi<λ∗,z> dz)

+ 1/V 2(
∑

λ∗1 ,λ
∗
2 6=0

e−2π2σ2(‖λ∗1‖
2+‖λ∗2‖

2)e−2πi<λ∗1+λ∗2 ,c>

∫
R(Λ)

e−2πi<λ∗1+λ∗2 ,z> dz)

(a)
=

1

V
(1 +

∑
λ∗∈Λ∗\{0}

e−4π2σ2‖λ∗‖2)

=
1

V
(1 + εΛ(

√
2σ)) (9)

where (a) follows from eqs. (7) and (8). Combination of
eqs. (5), (7) and (9) completes the proof.

Remark 1. The proposed upper bound on I(M,Zn) in [6,
Theorem 2] guarantees I(M,Zn)→ 0 if εΛ(σ)→ 0. Since the
flatness factor εΛ(σ) is a monotonically decreasing function of
σ, our proposed upper bound provides a milder condition to
have I(M,Zn)→ 0.

Theorem 2. Let Λs ⊂ Λe ⊂ Λb be a chain of n-dimensional
nested lattices such that as n→∞ such that:
• Λs is quantization and AWGN-good;
• Λe is secrecy-good, i.e.2

εΛe(σ) = e−Ω(n) , ∀γΛe(σ) < 2π ; (10)

• Λb is AWGN-good.
Then as n→∞, the semantic secrecy rate of the nested lattice
coding satisfies

R <
1

2
ln(

σ2
e

σ2
b

)− 1

2
ln(

e

2
) .

Proof. From the results of [4], we know that without random
dither at the transmitter and an MMSE filter at the receiver,

R+R
′
<

1

2
ln(SNRb) (11)

is achievable. From lemma 1, lemma 2 and theorem 1, in order
to satisfy I(M,Zn)→ 0, lattice Λe should satisfy

γΛe(
√

2σe) =
V (Λs)

2/n

(enR
′
)2/n2σ2

e

→ P2πe

e2R′2σ2
e

< 2π ,

and therefore,

R
′
>

1

2
lnSNRe +

1

2
ln(e/2) . (12)

The combination of eqs. (11) and (12) implies

R <
1

2
ln(

σ2
e

σ2
b

)− 1

2
ln(

e

2
) .

Remark 2. The secrecy capacity of mod-Λ Gaussian wiretap
channel is upper bounded by 1

2 ln(
σ2
e

σ2
b
). Theorem 2 suggests

that lattice nested coding can achieve the semantic capacity
to within 1

2 ln (e/2) nat which improves the established max-
imum achievable semantic secrecy rate in [6, Theorem 3] up
to 1

2 ln 2 nat.

III. GAUSSIAN WIRETAP CHANNEL

Consider the Gaussian Wiretap channel where both legit-
imate and eavesdropper channels are modeled by AWGN
channels;

Y n = Xn +Nn
b ,

Zn = Xn +Nn
e , (13)

where Xn is the transmitted signal, Y n and Zn are outputs
at the legitimate and the eavesdropper, and Nn

b and Nn
e are

n-dimensional Gaussian vectors with zero mean and variance
σ2
b and σ2

e respectively.

2We say f(x) = Ω(g(x)) when lim supx→∞|g(x)/f(x)|<∞.
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A. Coding Scheme
Now we describe the coding scheme in [6] which employs

lattice Gaussian coding. Let Λe ⊂ Λb be n-dimensional lattices
in Rn such that

1

n
ln
V (Λe)

V (Λb)
= R .

To transmit a given message m, Alice samples λ from
the discrete Gaussian distribution DΛe,σ0,−λm and transmits
Xn = λ+ λm. In [6], it is shown that as n→∞, if

εΛe(
σ2

0√
π
π−1

)→ 0 , (14)

we have 1
nE[‖Xn‖2] → σ2

0 . Therefore, we can choose σ2
0 =

P to satisfy the power constraint asymptotically. Decoding
of the confidential message is done by using MMSE lattice
decoding, i.e. after receiving y = x+nb, bob computes λ̃m =

[QΛb(ay)] modR(Λe) where α =
σ2
0

σ2
0+σ2

b
.

B. Secrecy
We note that the Eve’s channel transition probability is given

by

pZn|Xn(z|λm + λ) = fσe,λm+λ(z) ,

Since λ is sampled from DΛe,σ0,−λm , PZn|M is given by

pZn|M=m(z) =
1

fσ0(Λe + λm)

∑
λ∈Λe+λm

fσ0(λ)fσe(z− λ) .

(15)

In the following lemma, we derive an upper bound on the
KL distance between pZn|M=m and a continuous iid Gaussian
distribution with variance σ2

0 + σ2
e .

Theorem 3. Consider the continuous distribution q(x) ∈ Rn
obtained by adding a continuous Gaussian distribution fs(x)

and a discrete Gaussian DΛ+c,r. We define t
def
=
√
s2 + r2,

and `
def
=

√
r2s2(2r2+s2)

t4 . We have

DKL(ft(x), q(x)) ≤ ln(1 + εΛ(r)) + εΛ(r) +
1

2
εΛ(r)εΛ(`) .

(16)

Proof. The continuous distribution q on Rn obtained by
adding fs and DΛ+c,r is given by

q(x)

=
1

fr(Λ + c)

∑
y∈Λ+c

fr(y)fs(x− y)

=
1

(4π2r2s2)n/2
1

fr(Λ + c)

∑
y∈Λ+c

e−(‖y‖2/2r2+‖x−y‖2/2s2)

=
1

(4π2r2s2)n/2
1

fr(Λ + c)

×
∑

y∈Λ+c

e
−( r

2+s2

2r2s2
‖y− r2

r2+s2
x‖2+

‖x‖2

2(r2+s2)
)

= ft(x)
frs/t,(r/t)2x(Λ + c)

fr(Λ + c)

From the definition of KL-distance, we have

DKL(ft(x), q(x)) =

∫
Rn
ft(x) ln

ft(x)

q(x)
dx

= −
∫
Rn
ft(x) ln

q(x)

ft(x)
dx

(a)
= −

∫
Rn
ft(x)

ln

∑
u∈Λ∗ e

−2πi<(r/t)2x−c,u>e−2π2(rs/t)2‖u‖2∑
u∈Λ∗ e

2πi<c,u>e−2π2r2‖u‖2 dx

= ln
∑
u∈Λ∗

e2πi<u,c>e−2π2r2‖u‖2 + I , (17)

where (a) follows from the Poisson Summation formula, and

I = −
∫
Rn
ft(x) ln

∑
u∈Λ∗

e−2πi<(r/t)2x−c>e−2π2(rs/t)2‖u‖2

(a)

≤ −
∫
Rn
ft(x)

∑
u6=0

e−2πi<(r/t)2x−c>e−2π2(rs/t)2‖u‖2 dx

+
1

2

∫
Rn
ft(x)×

(
∑
u1

∑
u2

e−2πi<(r/t)2x−c,u1+u2>e−2π2(rs/t)2(u2
1+u2

2)) dx

= I1 + I2 , (18)

where (a) follows from the inequality: ln 1 + x ≥ x − x2/2.
We have

I1 = −
∑
u6=0

e2πi<u,c>e−2π2(rs/t)2‖u‖2×∫
Rn
ft(x)e−2πi<(r/t)2x,u> dx

(a)
= −

∑
u6=0

e−2π2(rs/t)2‖u‖2e−2π2(r4/t2)‖u‖2e2πi<u,c>

≤
∑
u6=0

e2πi<u,c>e−2π2r2‖u‖2 , (19)

where a follows from the fact that
∫
Rn e

− 1
2xAx+iB·x =√

(2π)n

detA e−
1
2B·A

−1·B . For the second therm, we have

I2 =
1

2

∑
u1 6=0

∑
u2 6=0

e2πi<u1+u2,c>e−2π2(rs/t)2(u2
1+u2

2)×∫
Rn
ft(x)e−2πi<(r/t)2x,u1+u2> dx

=
1

2

∑
u1 6=0

e−2π2r2(1−(r/t)4)‖u1‖2
∑
u2 6=0

e−2π2r2(u2−(r/t)2u1)2

(a)

≤ 1

2

∑
u1 6=0

e−2π2r2(1−(r/t)4)‖u1‖2
∑
u2 6=0

e−2π2r2‖u2‖2 , (20)

where (a) follows from the fact that the maximum of fσ,Λ(x)
are reached when x ∈ Λ. Combination of eqs. (17) to (20)
completes the proof.

115



Theorem theorem 3 provides an upper bound on the KL-
distance between PZn|M (.|m) and f√

σ2
0+σ2

e
as follows

DKL(PZn|M (.|m), f√
σ2
0+σ2

e
) ≤ ln(1 + εΛe(σ0)) + εΛe(σ0)

+
1

2
εΛe(σ0)εΛe(σ̄e) ,

(21)

where σ̄2
e

def
=

σ2
0σ

2
e(2σ2

0+σ2
e)

(σ2
0+σ2

e)2
. We note that since σ̄e is smaller

than σ0, and εΛ(σ) is a monotonically decreasing of σ, we
have DKL(PZn|M (.|m), g√

σ2
0+σ2

e
)→ 0 if

εΛe(σ̄e)→ 0 . (22)

Remark 3. In [6, Theorem 4], the proposed upper bound on
I(M,Zn) suggests that if εΛe(σ̃e) → 0, then I(M,Zn) → 0

where σ̃e
def
= σ0σe√

σ2
0+σ2

e

. Since σ̄e is larger than σ̃e, our

proposed upper bound provides a milder condition to have
I(M,Zn)→ 0.

Theorem 4. Suppose that SNRb · SNRe > 1. Then if Λb
is a sequence of AWGN-good lattices and Λe is a sequence
of secrecy-good lattice, any achievable semantic secrecy rate
satisfies

R <
1

2
ln(1 + SNRb)−

1

2
ln(1 + SNRe)−

1

2

+
1

2
ln(1 +

SNRe
1 + SNRe

) . (23)

Proof. Bob’s error probability is upper bounded by

Pe(m) ≤ (1 + ε
′
)P (w̃b(m) 6∈ V(Λb)) ,

where ε
′ def

= εe(
P√

1+σ2
b/P

) and w̃b(m)
def
= (α − 1)x + αnb.

Therefore, if Λb is a AWGN-good lattice, the error probability
Pe(m) vanishes exponentially if

γΛb(σ̃b) =
V (Λb)

2/n

σ̃2
b

> 2πe , (24)

where σ̃b
def
= σ0σb√

σ2
0+σ2

b

, and if

εΛe(
σ2

0√
1 + σ2

b/σ
2
0

)→ 0 . (25)

Combination of eqs. (14), (22), (24) and (25) completes the
proof.

Remark 4. The secrecy capacity of Gaussian wiretap chan-
nel is 1

2 ln( 1+SNRe
1+SNRb

). Our theorem suggests that the lattice
Gaussian signaling and MMSE lattice decoding can achieve
rates within 1

2 (1 − ln(1 + SNRe
1+SNRe

)) of the secrecy capacity.
It is worthy to mention that we could improve the established
secrecy rate in [6] up to 1

2 ln(1 + SNRe
1+SNRe

) nat.
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