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Abstract—Based on the lattice Gaussian distribution and the
associated flatness factor, we present a unified view of lattice
coding for achieving the Shannon capacity of the additive white
Gaussian noise (AWGN) channel and for approaching the secrecy
capacity of the Gaussian wiretap channel. In the former scenario,
we apply Gaussian shaping to an AWGN-good lattice; in the latter
scenario, we use a secrecy-good lattice nested with an AWGN-
good lattice. We show that they represent different aspects of the
lattice Gaussian distribution.

I. INTRODUCTION

The lattice Gaussian distribution is emerging as a com-
mon theme in diverse areas. In mathematics, Banaszczyk [1]
firstly used it to prove the transference theorems of lattices.
In cryptography, Micciancio and Regev used it to propose
lattice-based cryptosystems based on the worst-case hardness
assumptions [2], and recently, it has underpinned the fully-
homomorphic encryption for cloud computing [3]. In commu-
nications, Forney applied the lattice Gaussian distribution to
shaping of lattice codes [4] (see also [5]), and studied lattice-
aliased Gaussian noise in [6].

More recently, we defined the flatness factor associated
with the lattice Gaussian distribution and derived its many
properties [7, 8]. With this new tool, we are now able to
answer/address several major open questions in lattice coding.
For example, Erez and Zamir [9] proposed nested lattice
codes achieving the capacity of the power-constrained additive
white Gaussian noise (AWGN) channel, where a quantization-
good lattice serves as the shaping lattice while the AWGN-
good lattice serves as the coding lattice (dithering is also
required). In [8], we proposed lattice Gaussian coding, where
the codebook has a discrete Gaussian distribution over an
AWGN-good lattice. As another example, in [7] we used the
lattice Gaussian distribution to achieve semantic security over
the Gaussian wiretap channel, which led to the notion of
secrecy-good lattices. In both cases, we do not need a shaping
lattice or a dither.

In this review paper, we aim to present a unified view of
lattice Gaussian coding for capacity and secrecy. In Section II,
we review lattice Gaussian distributions and the flatness factor.
Section III describes the lattice Gaussian coding scheme for
the AWGN channel. Section IV gives the scheme for the Gaus-

sian wiretap channel, where the fine code is a Gaussian-shaped
AWGN-good lattice achieving the capacity of the legitimate
channel, and the coarse code is a secrecy-good lattice which
ensures the information leakage on the eavesdropper’s channel
is negligible. We try to shed light on the commonality of the
schemes for capacity and for secrecy [7, 8].

Throughout this paper, we use the natural logarithm, de-
noted by log, and information is measured in nats.

II. LATTICE GAUSSIAN DISTRIBUTION AND FLATNESS
FACTOR

An n-dimensional lattice Λ in the Euclidean space Rn is a
set defined by

Λ = L (B) = {Bx : x ∈ Zn}

where B is the n-by-n generator matrix. The dual lattice Λ∗

of a lattice Λ is defined as the set of vectors v ∈ Rn such
that ⟨v,λ⟩ ∈ Z, for all λ ∈ Λ.

For σ > 0 and c ∈ Rn, the usual Gaussian distribution of
variance σ2 centered at c ∈ Rn is given by

fσ,c(x) =
1

(
√
2πσ)n

e−
∥x−c∥2

2σ2 ,

for all x ∈ Rn. For convenience, we write fσ(x) = fσ,0(x).
Consider the Λ-periodic function (see Fig. 1(a))

fσ,Λ(x) =
∑
λ∈Λ

fσ,λ(x) =
1

(
√
2πσ)n

∑
λ∈Λ

e−
∥x−λ∥2

2σ2 , (1)

for all x ∈ Rn. Observe that fσ,Λ restricted to the fundamental
region R(Λ) is a probability density.

We define the discrete Gaussian distribution over Λ centered
at c ∈ Rn as the following discrete distribution taking values
in λ ∈ Λ:

DΛ,σ,c(λ) =
fσ,c(λ)

fσ,c(Λ)
, ∀λ ∈ Λ,

where fσ,c(Λ) ,
∑

λ∈Λ fσ,c(λ) = fσ,Λ(c). Again for
convenience, we write DΛ,σ = DΛ,σ,0. Fig. 1(b) illustrates
the discrete Gaussian distribution over Z2. As can be seen,
it resembles a continuous Gaussian distribution, but is only
defined over a lattice.



(a) Continuous periodic distribution fσ,Λ(x).
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(b) Discrete Gaussian distribution DΛ,σ(λ).

Fig. 1. Lattice Gaussian distributions.

In some sense, the continuous distribution fσ,Λ and the
discrete distribution DΛ,σ are the Fourier dual of each other.
To see this, note that since fσ,Λ(x) is Λ-periodic, it has the
Fourier expansion on the dual lattice Λ∗

fσ,Λ(x) =
1

V (Λ)

∑
λ∗∈Λ∗

f̂σ(λ
∗)ej2π⟨λ

∗,x⟩

where

f̂σ(y) =

∫
fσ(x)e

−j2π⟨x,y⟩dx = e−2π2σ2∥y∥2

(2)

is the Fourier transform. Thus, the Fourier coefficients f̂σ(λ∗)
have a discrete Gaussian distribution over the dual lattice Λ∗

(upon normalization).
The flatness factor of a lattice Λ quantifies the maximum

variation of fσ,Λ(x) for x ∈ Rn.

Definition 1 (Flatness factor [7]). For a lattice Λ and for a
parameter σ, the flatness factor is defined by:

ϵΛ(σ) , max
x∈R(Λ)

|V (Λ)fσ,Λ(x)− 1| .

In other words, fσ,Λ(x)
1/V (Λ) , the ratio between fσ,Λ(x) and

the uniform distribution over R(Λ), is within the range
[1− ϵΛ(σ), 1 + ϵΛ(σ)].

Proposition 1 (Expression of ϵΛ(σ) [7]). We have:

ϵΛ(σ) =

(
γΛ(σ)

2π

)n
2

ΘΛ

(
1

2πσ2

)
− 1

where γΛ(σ) =
V (Λ)

2
n

σ2 is the volume-to-noise ratio (VNR).

The following result guarantees the existence of sequences
of mod-p lattices whose flatness factors can vanish as n → ∞.

Theorem 1 ([7]). ∀σ > 0 and ∀δ > 0, there exists a sequence
of mod-p lattices Λ(n) such that

ϵΛ(n)(σ) ≤ (1 + δ) ·
(
γΛ(n)(σ)

2π

)n
2

, (3)

i.e., the flatness factor can go to zero exponentially for any
fixed VNR γΛ(n)(σ) < 2π.

The importance of a small flatness factor is two-fold. Firstly,
it assures the “folded" distribution fσ,Λ(x) is flat; secondly, it
implies the discrete Gaussian distribution DΛ,σ,c is “smooth".
In the following, we collect properties of lattice Gaussian
distributions.

Lemma 1 ([7]). Let Λ′ ⊂ Λ be a pair of nested lattices such
that ϵΛ′(σ) < 1

2 . If a is uniformly distributed in Λ/Λ′ and
b is sampled from DΛ′,σ,c−a, then the distribution Da+b of
a+ b satisfies

V(Da+b, DΛ,σ,c) ≤
2ϵΛ′(σ)

1− ϵΛ′(σ)
.

Lemma 2 (Variance of lattice Gaussian [7]). Let x ∼ DΛ,σ,c.
If ε = ϵΛ

(
σ/

√
π

π−t

)
< 1 for 0 < t < π, then∣∣∣E [

∥x− c∥2
]
− nσ2

∣∣∣ ≤ 2πεt
1− ε

σ2

where
εt ,

{
ε, t ≥ 1/e;
(t−4 + 1)ε, 0 < t < 1/e.

Lemma 3 (Entropy of lattice Gaussian [7]). Let x ∼ DΛ,σ,c.
If ε = ϵΛ

(
σ/

√
π

π−t

)
< 1 for 0 < t < π, then the entropy

rate of x satisfies∣∣∣∣ 1nH(x)−
[
log(

√
2πeσ)− 1

n
log V (Λ)

]∣∣∣∣ ≤ ε′,

where ε′ = − log(1−ε)
n + πεt

n(1−ε) .

Lemma 4 ([10]). Given any vector c ∈ Rn, and σs, σ > 0.
Let σ̃ , σsσ√

σ2
s+σ2

and let σ′
s =

√
σ2
s + σ2. Consider the con-

tinuous distribution g on Rn obtained by adding a continuous
Gaussian of variance σ2 to a discrete Gaussian DΛ−c,σs :

g(x) =
1

fσs(Λ− c)

∑
t∈Λ−c

fσs
(t)fσ(x− t), x ∈ Rn.



If ε = ϵΛ (σ̃) < 1
2 , then g(x)

fσ′
s
(x) is uniformly close to 1:

∀x ∈ Rn,

∣∣∣∣ g(x)

fσ′
s
(x)

− 1

∣∣∣∣ ≤ 4ε. (4)

Regev’s lemma leads to an important property, namely, the
discrete Gaussian distribution over a lattice is almost capacity-
achieving if the flatness factor is small [8].

III. ACHIEVING CHANNEL CAPACITY

Consider the classic AWGN channel

Yn = Xn +Wn

where Wn is an n-dimensional Gaussian noise vector with
zero mean and variance σ2

w.
In [8], we proposed a new coding scheme based on the

lattice Gaussian distribution with power constraint P . The
SNR is defined by SNR = P/σ2

w. Let Λ be an AWGN-good
lattice of dimension n. The encoder maps the information bits
to points in Λ, which obey the lattice Gaussian distribution
(cf. Fig. 1(b))

x ∼ DΛ,σs .

Since the continuous Gaussian distribution is capacity-
achieving, we want the lattice Gaussian distribution to be-
have like the continuous Gaussian distribution (in particular
P ≈ σ2

s ). This can be assured by a small flatness factor
ϵΛ

(
σs/

√
π

π−t

)
for 0 < t < π. For t → 0, this condition

is essentially ϵΛ (σs) → 0. Thus, while we are concerned
with the discrete distribution DΛ,σs , we in fact require the
associated periodic distribution fσs,Λ to be flat.

Since the lattice points are not equally probable a priori in
the lattice Gaussian coding, we will use maximum-a-posteriori
(MAP) decoding. In [7], it was shown that MAP decoding is
equivalent to Euclidean lattice decoding of Λ using a scaling
coefficient α =

σ2
s

σ2
s+σ2

w
, which is asymptotically equal to the

MMSE coefficient P
P+σ2

w
. In fact, the error probability of the

proposed scheme under MMSE lattice decoding admits almost
the same expression as that of Poltyrev [11], with σw replaced
by σ̃w = σsσw√

σ2
s+σ2

w

. To satisfy the sphere bound, we choose

the fundamental volume V (Λ) such that

V (Λ)2/n > 2πeσ̃2
w. (5)

Meanwhile, the rate of the scheme is given by the entropy
of the lattice Gaussian distribution. By Lemma 3, we have

R → log(
√
2πeσs)−

1

n
log V (Λ)

< log(
√
2πeσs)−

1

2
log

(
2πe

σ2
sσ

2
w

σ2
s + σ2

w

)
=

1

2
log

(
1 +

σ2
s

σ2
w

)
→ 1

2
log (1 + SNR).

In fact, the rate can be arbitrarily close to the channel capacity.
A more careful analysis also shows that the condition SNR > e
is needed.

Theorem 2 (Coding theorem for lattice Gaussian coding [8]).
Consider a lattice code whose codewords are drawn from
the discrete Gaussian distribution DΛ,σs

for an AWGN-good
lattice Λ. If SNR > e, then any rate up to the channel capacity
1
2 log (1 + SNR) is achievable, while the error probability of
MMSE lattice decoding vanishes exponentially fast.

IV. APPROACHING SECRECY CAPACITY

Now consider the Gaussian wiretap channel where Alice
and Bob are the legitimate users, while Eve is an eavesdropper.
The outputs Yn and Zn at Bob and Eve’s ends respectively
are given by {

Yn = Xn +Wn
b ,

Zn = Xn +Wn
e ,

(6)

where Wn
b , Wn

e are n-dimensional Gaussian noise vectors with
zero mean and variance σ2

b , σ2
e respectively.

For secrecy rate R, we use coset coding induced by a lattice
partition Λe ⊂ Λb such that

1

n
log |Λb/Λe| = R.

The fine lattice Λb is the usual coding lattice for Bob, i.e., it
is an AWGN-good lattice. The coarse lattice Λe is new, and
turns out to be a secrecy-good lattice. To encode, Alice uses
the secret bits to select one coset of Λe and transmits a random
point inside this coset.

Let us discuss intuitively why this scheme is secure. In-
formally, given message m, Alice samples a lattice point
uniformly at random from a coset Λe +λm (this corresponds
to Poltyrev’s setting of infinite lattice coding [11]). Due to the
channel noise, Eve observes the periodic distribution

1

(
√
2πσe)n

∑
λ∈Λ+λm

e
− ∥z−λ∥2

2σ2
e .

If the flatness factor ϵΛe(σe) is small, it will be close to
a uniform distribution, regardless of message m. Then Eve
would not be able to distinguish which message Alice has
sent. With a careful design of Λe, this is possible, because
Eve’s channel is noisier. Of course, the technical difficulty
here is that one cannot really sample a lattice point uniformly
from a lattice or its coset.

Now we describe the wiretap coding scheme more formally.
Consider a message set Mn = {1, . . . , enR}, and a one-to-one
function ϕ : Mn → Λb/Λe which associates each message
m ∈ Mn to a coset λ̃m ∈ Λb/Λe. One could choose the
coset representative λm ∈ Λb ∩ R(Λe) for any fundamental
region R(Λe). In order to encode the message m ∈ Mn, Alice
actually samples Xn

m from lattice Gaussian distribution

Xn
m ∼ DΛe+λm,σs .



equivalently, Alice transmits λ+λm where λ ∼ DΛe,σs,−λm .
Let σ̃e = σsσe√

σ2
s+σ2

e

and σ′
s =

√
σ2
s + σ2

e . Regev’s Lemma 4

implies that if ϵΛe (σ̃e) <
1
2 , then:

V
(
pZn|M(·|m), fσ′

s

)
≤ 4ϵΛe

(σ̃e) .

We see that the received signals converge to the same
Gaussian distribution fσ′

s
. This already gives distinguishing

security, which means that, asymptotically, the channel outputs
are indistinguishable for different input messages.

An upper bound on the amount of leaked information then
follows.

Theorem 3 (Information leakage [7]). Suppose that the
wiretap coding scheme described above is employed on the
Gaussian wiretap channel (6), and let εn = ϵΛe (σ̃e). Assume
that εn < 1

2 for all n. Then the mutual information between the
confidential message and the eavesdropper’s signal is bounded
as follows:

I(M;Zn) ≤ 8εnnR− 8εn log 8εn. (7)

A wiretap coding scheme is secure in the sense of strong
secrecy if limn→∞ I(M;Zn) = 0. From (7), a flatness factor
εn = o( 1n ) would be enough. In practice, an exponential decay
of the information leakage is desired, and this motivates the
notion of secrecy-good lattices:

Definition 2 (Secrecy-good lattices). A sequence of lattices
Λ(n) is secrecy-good if

ϵΛ(n)(σ) = e−Ω(n), ∀γΛ(n)(σ) < 2π. (8)

In the notion of strong secrecy, plaintext messages are often
assumed to be random and uniformly distributed in M. This
assumption is deemed problematic from the cryptographic
perspective, since in many setups plaintext messages are not
random. This issue can be resolved by using the standard
notion of semantic security [12] which means that, asymptoti-
cally, it is impossible to estimate any function of the message
better than to guess it without considering Zn at all. The
relation between strong secrecy and semantic security was
recently revealed in [7, 13], namely, achieving strong secrecy
for all distributions of the plaintext messages is equivalent to
achieving semantic security. Since in our scheme we make
no a priori assumption on the distribution of m, it achieves
semantic security.

It was shown in [7] that, under mild conditions, the secrecy
rate

R <
1

2
log(1 + SNRb)−

1

2
log(1 + SNRe)−

1

2
(9)

is achievable, which is within a half nat from the secrecy
capacity.

Lastly, let us scrutinize the distribution of Alice’s con-
stellation. For this purpose only, we assume the confidential
message λm ∈ [Λb/Λe] is uniformly distributed (or the
secrecy rate will be smaller). By Lemma 1, if ϵΛe(σs) ≤ ε
(which we trivially have, since even ϵΛe (σ̃e) → 0), then

V(pXn , DΛb,σs) ≤
2ε

1− ε
.

Namely, the density pXn is close to the discrete Gaussian
distribution over Λb. This shows that in fact, the fine code
is capacity-achieving for Bob’s channel. In contrast, from (9),
we know that the coarse code has a rate > 1

2 log(1+SNRe)+
1
2 ,

i.e., above the capacity of Eve’s channel.

V. DISCUSSION

In this paper, we have demonstrated the applications of the
lattice Gaussian distribution to coding problems for the AWGN
channel and the Gaussian wiretap channel. For capacity it is
desired that the discrete Gaussian distribution of the lattice
codebook behaves like the continuous Gaussian distribution,
while for secrecy it is required that the aliased Gaussian
distribution of the noise becomes flat. Both scenarios demand
a vanishing flatness factor and thus can be viewed as two sides
of one coin.
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