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Introduction

The Gaussian Wiretap Channel
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Figure : The Gaussian Wiretap Channel model

The secrecy capacity is given by

Cs = [CA→B −CA→E ]+

where CA→B = log2

(
1+ P

N0

)
and CA→E = log2

(
1+ P

N1

)
can be achieved by doing lattice

coding.
Of course, Cs > 0 if N0 < N1.
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Introduction

Encoder Design

The problem of Wiretap is a problem of labelling transmitted symbols with data bits

+2 mod (4) Channel
We suppose the alphabet Z4 and a channel Alice,→Eve that outputs

y = x+2

with probability 1/2 and x with same probability. The symbol error probability is 1/2.

Symbol to Bits Labelling

s = 2b1 +b0

Bit b1 experiences error probability 1/2 while bit b0 experiences error probability 0.

Confidential data must be encoded through b1. On b0, put random bits.
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Coset Coding

Uniform Noise

Assume that Alice → Eve channel is corrupted by an additive uniform noise

Error Probability
Pseudo-random symbols are perfectly decoded by Eve when data error probability will
be high.

unfortunately not valid for Gaussian noise.
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Uniform Noise

Assume that Alice → Eve channel is corrupted by an additive uniform noise

Transmitted point

Label points with pseudo−random bits

Figure : Points can be decoded error free: label with pseudo-random symbols
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Coset Coding

Uniform Noise

Assume that Alice → Eve channel is corrupted by an additive uniform noise

Transmitted point

Label points with data

Figure : Points are not distinguishable: label with data

Error Probability
Pseudo-random symbols are perfectly decoded by Eve when data error probability will
be high.
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Coset Coding

Coset Coding with Integers

Example

Suppose that points x are in Z.

Euclidean division
x = 3q+ r

q carries the pseudo-random symbols while r carries the data or “pseudo-random symbols
label points in 3Zwhile data label elements of Z/3Z”.

Transmitted point

Label points with data + pseudo−random bits

Figure : Constellation corrupted by uniform noise
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Coset Coding

Lattice Coset Coding

Gaussian noise is not bounded: it needs a n−dimensional approach (then let n →∞ for
sphere hardening).

1−dimensional n−dimensional
Transmitted lattice Z Fine lattice Λb

Pseudo-random symbols mZ⊂Z Coarse lattice Λe ⊂Λb
Data Z/mZ Cosets Λb/Λe

Table : From the example to the general scheme
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Part II

Secrecy Gain and Flatness Factor



Theta Series

Outline

3 Theta Series
Eve’s probability of Correct Decision
Secrecy function and secrecy gain
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Theta Series

Eve’s Probability of Correct Decision (data)

Can Eve decode the data?

Figure : Eve correctly decodes when finding
another coset representative

Eve’s Probability of correct decision

Pc,e ≤
(

1√
2πσ2

)n

Vol
(
Λb

) ∑
r∈Λe

e
− ‖r‖2

2σ2

=
(

1√
2πσ2

)n

Vol
(
Λb

)
ΘΛe

(
1

2πσ2

)
where

ΘΛ(y) = ∑
~x∈Λ

q‖~x‖
2

,q = e−πy ,y > 0

is the theta series of Λ.

Problem
Find Λ minimizing ΘΛ(y).
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Theta Series

Secrecy function

Definition
Let Λ be a n−dimensional lattice with fundamental volume λn. Its secrecy function is
defined as,

ΞΛ(y),
ΘλZn (y)

ΘΛ(y)
=
ϑn

3

(
e−π

p
λy

)
ΘΛ(y)

where ϑ3(q) =∑+∞
n=−∞ qn2

and y > 0.

Examples
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Figure : Secrecy functions of E8 and Λ24
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Theta Series

Secrecy Gain

Definition
The strong secrecy gain of a lattice Λ is

χs
Λ , sup

y>0
ΞΛ(y)

A lattice equivalent to its dual has a theta series with a multiplicative symmetry point at d (Λ)−
1
n

(Poisson-Jacobi’s formula),

ΞΛ

(
d (Λ)−

1
n y

)
=ΞΛ

 d (Λ)−
1
n

y



Definition
For a lattice Λ equivalent to its dual and of determinant (volume) d (Λ), we define the
weak secrecy gain,

χΛ ,ΞΛ

(
d (Λ)−

1
n

)
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Theta Series

Conjecture

Conjecture
If Λ is a unimodular lattice, then the strong and the weak secrecy gains coincide.

Corollary
The strong secrecy gain of a unimodular lattice Λ is χs

Λ
,ΞΛ(1).

Calculation of E8 secrecy gain
From E8 theta series,

1

ΞE8 (1)
=

1
2

(
ϑ2(e−π)8 +ϑ3(e−π)8 +ϑ4(e−π)8)

ϑ3(e−π)8

= 3

4
(since

ϑ2
(
e−π

)
ϑ3 (e−π)

= ϑ4
(
e−π

)
ϑ3 (e−π)

= 1
4p2

)

so we get χE8 =ΞE8 (1) = 4

3
.

15 / 31
Lattices and Physical-Layer Security: A finite-dimensional analysis

N



Theta Series

Conjecture

Conjecture
If Λ is a unimodular lattice, then the strong and the weak secrecy gains coincide.

Corollary
The strong secrecy gain of a unimodular lattice Λ is χs

Λ
,ΞΛ(1).

Calculation of E8 secrecy gain
From E8 theta series,

1

ΞE8 (1)
=

1
2

(
ϑ2(e−π)8 +ϑ3(e−π)8 +ϑ4(e−π)8)

ϑ3(e−π)8

= 3

4
(since

ϑ2
(
e−π

)
ϑ3 (e−π)

= ϑ4
(
e−π

)
ϑ3 (e−π)

= 1
4p2

)

so we get χE8 =ΞE8 (1) = 4

3
.

15 / 31
Lattices and Physical-Layer Security: A finite-dimensional analysis

N



Part III

Even Unimodular Lattices



Even Unimodular Lattices
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4 Even Unimodular Lattices
Definition and first results
Secrecy gain of extremal lattices
Asymptotic behavior
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Even Unimodular Lattices

Even Unimodular Lattices

Example
E8 or the Leech lattice Λ24 are even unimodular.

Properties
An even unimodular latticeΛ only exists when n is a multiple of 8. The minimum squared
length of any non zero vector is upperbounded

δ2 ≤ 2(m+1)

where n = 24m+8k, k = 0,1,2. A lattice achieving this upperbound is called extremal. E8
and Leech lattice are extremal.
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Even Unimodular Lattices

Secrecy Gain of Extremal Lattices

Secrecy Functions in dimensions 72 and 80
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Figure : Secrecy functions of extremal lattices (n = 72,80)

Secrecy gains of extremal lattices (all rational numbers !!!)
Dimension 8 24 32 48 72 80

Secrecy gain 4
3

256
63

64
9

524288
19467

134217728
685881 ' 195.7 536870912

1414413 ' 380
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Even Unimodular Lattices

Secrecy Gain of extremal Even Unimodular Lattices

Theorem
The secrecy gain of an extremal even unimodular lattice is a rational number.

Proof.
Theta series of an even unimodular lattice Λ (n = 24m+8k),

ΘΛ =
m∑

j=0
bjE

3(m−j)+k
4 ∆j

with E4 = 1
2

(
ϑ8

2 +ϑ8
3 +ϑ8

4

)
, ∆= 1

256 (ϑ2ϑ3ϑ4)8 and bj ∈C. As the lattice is extremal, bj are
computed by solving a linear system with integer coefficients, so bj ∈Q. As{

ϑ2
(
e−π

) =ϑ4
(
e−π

)
ϑ3

(
e−π

) = 4p2ϑ4
(
e−π

) ,

we obtain

E4
(
e−π

)= 3

4
ϑ8

3
(
e−π

)
and ∆

(
e−π

)= 1

212
ϑ24

3
(
e−π

)
giving the rationality of ΞΛ(1).
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Even Unimodular Lattices

Asymptotic behavior (I)

Want to study the behavior of even unimodular lattices when n →∞.

Question
How does the optimal secrecy gain behaves when n →∞ ?

First answer
Apply the Siegel-Weil formula,

∑
Λ∈Ωn

ΘΛ(q)

|Aut(Λ)| = Mn ·Ek

(
q2

)

where

Mn = ∑
Λ∈Ωn

1

|Aut(Λ)|

and Ek is the Eisenstein series with weight k = n
2 . Ωn is the set of all inequivalent

n−dimensional, even unimodular lattices. We get

Θn,opt
(
e−π

)≤ Ek

(
e−2π

)
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Even Unimodular Lattices

Asymptotic behavior (II)

Maximal Secrecy gain
For a given dimension n, multiple of 8,
there exists an even unimodular lattice
whose secrecy gain is

χn ≥ ϑn
3

(
e−π

)
Ek

(
e−2π

) ' 1

2

 π
1
4

Γ
(

3
4

)
n

' 1.086n

2

Behavior of Eisenstein Series
We have

Ek

(
e−2π

)
= 1+ 2k∣∣Bk

∣∣ +∞∑
m=1

mk−1

e2πm −1

Bk being the Bernoulli numbers. For k a mul-
tiple of 4, then Ek

(
e−2π)

fastly converges to 2
(k →∞).

Bound from Siegel-Weil Formula vs. Extremal lattices

Figure : Lower bound of the minimal secrecy gain as a function of
n from Siegel-Weil formula. Points correspond to extremal
lattices.
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Even Unimodular Lattices

Another way of analyzing the asymptotic behavior

Expression of the theta series
For a 2k−dimensional even unimodular lattice, the
Fourier decomposition gives

ΘΛ(z) = Ek(z)+Sk (z,Λ) =
∞∑

m=0
r (m,Λ)e2iπmz

where Sk (z,Λ) is a cusp form.

Fourier coefficients
If Sk (z,Λ) =∑∞

m=0 a (m,Λ)e2iπmz , then,

r (m,Λ) = (2π)k

ζ(k)Γ(k)
σk−1(m)︸ ︷︷ ︸

Ek

+a (m,Λ)︸ ︷︷ ︸
Sk

Asymptotics
Asymptotic analysis givesσk−1(m) = O

(
mk−1

)
a (m,Λ) = O

(
m

k
2

)

Conclusion
Coefficients of Ek are asymptotic esti-
mates of the coefficients of ΘΛ. The se-
crecy gain of any even unimodular lattice
behaves like

ϑ2k
3

(
e−π

)
Ek

(
e−2π

)
when k →∞.
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The flatness factor

Flatness Factor

Information Leakage
LetM be the transmitted secret message and Zn be the vector received by Eve. Then,

I
(
M;Zn)≤ 2εΛn (σ)

(
nR− logεΛn (σ)

)
where

εΛn (σ) =
(

Vol(Λn)
2
n

2πσ2

) n
2

ΘΛn

(
1

2πσ2

)
−1

is the flatness factor of the lattice Λn.

Remark
True definition of the flatness factor is

εΛn (σ) = max
x∈V (Λn)

∣∣∣∣∣∣∣∣
∑

t∈Λn

(
1

2πσ2

) n
2 e

− ‖x−t‖2

2σ2

1/vol(Λn)
−1

∣∣∣∣∣∣∣∣ .
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The flatness factor

Intuition

Figure : Sum of Gaussian Measures on the 2Z2 lattice with σ2 = 0.3 and σ2 = 0.6

Goal
Is it possible to obtain a vanishing flatness factor? For which values of σ?
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The flatness factor

Asymptotics of the flatness factor

Flatness factor of an even unimodular lattice
For n large enough, randomly choose an even unimodular lattice Λn. Then, set y = 1

2πσ2

(and k = n
2 ),

εΛn (σ) = y
n
2 ΘΛn (iy)−1

' ykEk(iy)−1

' yk

Strong secrecy for even unimodular lattices
We thus get

εΛn (σ) →
n→∞


0 σ2 > 1

2π → strong secrecy

1 σ2 = 1
2π

∞ σ2 < 1
2π
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Finite dimension analysis

Construction A

Construction A usingZ
Let q be an integer. Then, Z/qZ is a finite field if q is a prime and a finite ring otherwise.
For a linear code C of length n defined on Z/qZ, lattice Λ is given by

Λ= qZn +C ,
⋃

x∈C

(
qZn +x

)
.

Construction of D4

D4 is obtained as

D4 = 2Z4 + (4,3,2)F2 = (1+ i)Z[i]2 + (2,1,2)F2

where (4,3,2)F2 is the binary parity-check code.

Construction of E8

E8 is obtained as

E8 = 2Z8 + (8,4,4)F2 = ⋃
x∈(8,4)F2

(
2Z8 +x

)

where (8,4,4)F2 is the extended binary Hamming
code (7,4,3)F2 .
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Finite dimension analysis

Construction A (quaternary)

Construction A of the Leech lattice
The Leech lattice can be obtained as

Λ24 = 4Z24 + (24,12)Z4

where (24,12)Z4 is the quaternary self-dual code obtained by extending the quaternary
cyclic Golay code over Z4.

Other constructions
Construction A can be generalized. Constructions B, C, D or E for instance. But one
can show that all these constructions are equivalent to construction A with a suitable
alphabet.
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Finite dimension analysis

Constructions with codes

Binary construction A
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