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The Gaussian Wiretap Channel

Figure : The Gaussian Wiretap Channel model
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Figure : The Gaussian Wiretap Channel model

The secrecy capacity is given by

’ Cs=1[Ca~p—Ca-pgl" ‘

where Cy_.p =log, (1 + N%) and Cy—.g = log, (1 + N%) can be achieved by doing lattice

coding.
Of course, Cs > 0if Ny < N;.
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Encoder Design

@ The problem of Wiretap is a problem of labelling transmitted symbols with data bits

Lattices and Physical-Layer Security: A finite-dimensional analysis

5/31



TELECOM Introduction
ParisTech

Encoder Design

@ The problem of Wiretap is a problem of labelling transmitted symbols with data bits

+2 mod (4) Channel
We suppose the alphabet Z, and a channel Alice—Eve that outputs

y=x+2

with probability 1/2 and x with same probability. The symbol error probability is 1/2.
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Encoder Design

@ The problem of Wiretap is a problem of labelling transmitted symbols with data bits

+2 mod (4) Channel
We suppose the alphabet Z, and a channel Alice— Eve that outputs

y=x+2
with probability 1/2 and x with same probability. The symbol error probability is 1/2.
Symbol to Bits Labelling

s=2by + by

Bit b; experiences error probability 1/2 while bit by experiences error probability 0.
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Encoder Design

@ The problem of Wiretap is a problem of labelling transmitted symbols with data bits

+2 mod (4) Channel
We suppose the alphabet Z, and a channel Alice— Eve that outputs

y=x+2
with probability 1/2 and x with same probability. The symbol error probability is 1/2.

Symbol to Bits Labelling

s=2by + by

Bit b; experiences error probability 1/2 while bit by experiences error probability 0.

Confidential data must be encoded through b;. On by, put random bits.
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© Coset Coding
A toy example: uniform noise
Coset Coding
Lattice Coset Coding
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Assume that Alice — Eve channel is corrupted by an additive uniform noise
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Uniform Noise

Assume that Alice — Eve channel is corrupted by an additive uniform noise

Label points with data + pseudo—random bits

—0—0 0 0 0 0 0 o o o o o o

/4

Transmitted point

Figure : Constellation corrupted by uniform noise
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Assume that Alice — Eve channel is corrupted by an additive uniform noise

Label points with pseudo—random bits

—— 0 ——— 06— & 0 —

/4

Transmitted point

Figure : Points can be decoded error free: label with pseudo-random symbols
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Assume that Alice — Eve channel is corrupted by an additive uniform noise

Label points with data

/4

Transmitted point

Figure : Points are not distinguishable: label with data
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Assume that Alice — Eve channel is corrupted by an additive uniform noise

Label points with data

Transmitted point
Label points with pseudo—random bits

———& —— & ———— @& & —
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Uniform Noise

Assume that Alice — Eve channel is corrupted by an additive uniform noise

Error Probability

Pseudo-random symbols are perfectly decoded by Eve when data error probability will
be high.

@ unfortunately not valid for Gaussian noise.

Label points with data

Transmitted point
Label points with pseudo—random bits

———& — & ———— @& & —

/4
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Coset Coding with Integers

Label points with data + pseudo—random bits

—0—0 0 0 0 0 06 o o o o o o

/4

Transmitted point
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Example

@ Suppose that points x are in Z.

@ Euclidean division
x=3q+r

@ ¢ carries the pseudo-random symbols while r carries the data or “pseudo-random symbols
label points in 37 while data label elements of 7/37”.

Label points with data + pseudo—random bits

—0—0 0 0 0 0 0 o o o o o o

/4

Transmitted point
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Gaussian noise is not bounded: it needs a n—dimensional approach (then let 7 — co for

sphere hardening).
1-dimensional n—dimensional
Transmitted lattice z Fine lattice A,
Pseudo-random symbols mZcZ Coarse lattice Ap c Ay,
Data ZlmzZ Cosets A/ Ae

Table : From the example to the general scheme
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Secrecy Gain and Flatness Factor




© Theta Series
Eve’s probability of Correct Decision
Secrecy function and secrecy gain
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Theta Series

Eve’s Probability of Correct Decision (data)
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Eve’s Probability of Correct Decision (data)

Can Eve decode the data?

Figure : Eve correctly decodes when finding
another coset representative
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Eve’s Probability of Correct Decision (data)

Can Eve decode the data?

Figure : Eve correctly decodes when finding
another coset representative

Eve’s Probability of correct decision

( 1\ () 5 _nru22
P, < Vol Ay e 20
o V2no? rehe
1 n
) (\/27:02 VOI(AZ’)@AE(Z 2)
where

=12
oAm =Y. ¢, g=e,y>0

XeA

is the theta series of A.
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Eve’s Probability of Correct Decision (data)

Can Eve decode the data?

Figure : Eve correctly decodes when finding
another coset representative

Eve’s Probability of correct decision

( 1\ () 5 _nru22
P, < Vol Ay e 20
o V2no? rehe
1 n
) (\/27:02 VOI(AI’)@AE(Z 2)
where

=12
oAm =Y. ¢, g=e,y>0

XeA

is the theta series of A.

Problem
Find A minimizing © 4 (y).
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Secrecy function

Definition
Let A be a n—dimensional lattice with fundamental volume A”. Its secrecy function is

defined as,
—vV/A
2 Oazn(y) _ b3 (e mﬁy)

A= 5 m B0

where 93(q) = X722 o q”2 and y > 0.
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Secrecy function

Definition
Let A be a n—dimensional lattice with fundamental volume A”. Its secrecy function is

defined as,
N
2 Oazn(y) _ b3 (e mﬁy)

A= 5 m B0

where 93(q) = X722 o q”2 and y > 0.

Examples

)
BN
™~
L]

15

-6 -4 = [ 2 4 6 -6 4 = [ 2 4 [3
¥ (B) ¥ (@B)

Figure : Secrecy functions of Eg and Ayy
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Secrecy Gain

Definition
The strong secrecy gain of a lattice A is

oA S sug EAW)
y>
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Secrecy Gain

Definition
The strong secrecy gain of a lattice A is

= sug EAQ)
>

1
@ Alattice equivalent to its dual has a theta series with a multiplicative symmetry point at d(A)” 7
(Poisson-Jacobi’s formula),
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Definition
The strong secrecy gain of a lattice A is

oA S sug EAW)
y>

1
@ Alattice equivalent to its dual has a theta series with a multiplicative symmetry point at d(A)™ 72

(Poisson-Jacobi’s formula),
1
_1 1(N)~ 7
EA(d(A) ny):EA(‘( y) )

Definition
For a lattice A equivalent to its dual and of determinant (volume) d(A), we define the
weak secrecy gain,

eamensionar analysis
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Conjecture

Conjecture

If A is a unimodular lattice, then the strong and the weak secrecy gains coincide.

Corollary

The strong secrecy gain of a unimodular lattice A is )(j\ LE0).
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Conjecture

Conjecture
If A is a unimodular lattice, then the strong and the weak secrecy gains coincide.

Corollary
The strong secrecy gain of a unimodular lattice A is )(j\ LZ,(0D).

Calculation of Eg secrecy gain
From FEjg theta series,

1 (BB +03(eB+04(eB)
EpQ) 93(e~™)8
3 . 02 (e’”) 194( 7”) 1
= (since ———— PN 1‘)3( 7) 4—\/5)

4
so we get| Y kg 558(1):5 l
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@ Even Unimodular Lattices
Definition and first results
Secrecy gain of extremal lattices
Asymptotic behavior
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Even Unimodular Lattices

Example
Eg or the Leech lattice Ay, are even unimodular.
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Even Unimodular Lattices

Example
Eg or the Leech lattice Ay, are even unimodular.

Properties
An even unimodular lattice A only exists when 7 is a multiple of 8. The minimum squared
length of any non zero vector is upperbounded

6% <2(m+1)

where n=24m+8k, k=0,1,2. Alattice achieving this upperbound is called extremal. Eg
and Leech lattice are extremal.

Lattices and Physical-Layer Security: A finite-dimensional analysis
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Secrecy Gain of Extremal Lattices

Secrecy Functions in dimensions 72 and 80

200

()

— |
—
Z0,0)
— |

¥ (dB) ¥ (@B)

Figure : Secrecy functions of extremal lattices (1 = 72,80)
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Secrecy Gain of Extremal Lattices

Secrecy Functions in dimensions 72 and 80

200

()

— |
—
Z0,0)
— |

¥ (dB)

Figure : Secrecy functions of extremal lattices (1 = 72,80)

Secrecy gains of extremal lattices (all rational numbers !!!)
| Dimension | 8 [ 24 [ 32 [ 48 | 72 | 80

Secrecy gain 4 256 524288 134217728 _ 1957

46 63583

338512 ~380

Lattices and Physical-Layer Sec
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Secrecy Gain of extremal Even Unimodular Lattices

Theorem
The secrecy gain of an extremal even unimodular lattice is a rational number.

Lattices and Physical-Layer Security: A finite-dimensional analysis
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= Secrecy Gain of extremal Even Unimodular Lattices

Theorem
The secrecy gain of an extremal even unimodular lattice is a rational number.

Proof.
Theta series of an even unimodular lattice A (7 =24m + 8k),

m o
= Z bjﬁi(m_j)-'—kA‘]
j=0

with E; = % (ﬁg + ﬁg + 1‘)2), A= ﬁ (929394)® and bj € C. As the lattice is extremal, b; are
computed by solving a linear system with integer coefficients, so b; € Q. As

we obtain

giving the rationality of Z 4 (1).

Lattices and Physical-Layer Security: A finite-dimensional analysis "
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Asymptotic behavior (I)

Question
How does the optimal secrecy gain behaves when 7 — co ?
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symptotic behavior (I)

Question
How does the optimal secrecy gain behaves when 7 — co ?

First answer
Apply the Siegel-Weil formula,

CING)
=M, -E
AET, Aut)] k(qz)

where
1

My = —_—
! Aén Aut(A)|

and Ej is the Eisenstein series with weight k = % Qy is the set of all inequivalent

n—dimensional, even unimodular lattices. We get

@n,opt (e_”) =Ep (6_2”)




Even Unimodular Lattices

Asymptotic behavior (II)

Maximal Secrecy gain

For a given dimension 7, multiple of 8,
there exists an even unimodular lattice
whose secrecy gain is

ﬁg’(e’”) 1
An= ——= =
Ex(e?7) 2

Lattices and Physical-Layer Security: A finite-dimensional analysis
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Maximal Secrecy gain

For a given dimension 7, multiple of 8,
there exists an even unimodular lattice
whose secrecy gain is

ﬁg’(e’”) 1
An= ——= =
Ex(e?7) 2

Behavior of Eisenstein Series
We have

2k +oo k—1

B (o) =14 0 Y I
|Bi| =1 7 =1

By being the Bernoulli numbers. For k a mul-

tiple of 4, then Ey (e~27) fastly converges to 2

(k— o0).

Lattices and Physical-Layer Security: A finite-dimensional analysis

22 /31



TELECOM| Even Unimodular Lattices
ParisTech

Asymptotic behavior (II)

Maximal Secrecy gain

For a given dimension 7, multiple of 8,
there exists an even unimodular lattice
whose secrecy gain is

ﬁg’(e’”) 1
An= ——= =
Ex(e?7) 2

Behavior of Eisenstein Series

We have
+00 k—1
B (e727) =1+ 2k N _m
Bl =1 27m -1

By being the Bernoulli numbers. For k a mul-
tiple of 4, then Ey (e~27) fastly converges to 2
(k— o0).

Bound from Siegel-Weil Formula vs. Extremal lattices

400

300

X,

200

/
/‘
7
,‘4._,.__.——0’//./ 1

Dimension n

Figure : Lower bound of the minimal secrecy gain as a function of
n from Siegel-Weil formula. Points correspond to extremal

lattices.
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Another way of analyzing the asymptotic behavior

Expression of the theta series
For a 2k—dimensional even unimodular lattice, the
Fourier decomposition gives

) )
O = EtD+ Sz N) = Y r(m, ) E7ME
m=0

where Sy (z,A) is a cusp form.

Lattices and Physical-Layer Security: A finite-dimensional analysis
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Expression of the theta series
For a 2k—dimensional even unimodular lattice, the
Fourier decomposition gives

) )
O = EtD+ Sz N) = Y r(m, ) E7ME
m=0

where Sy (z,A) is a cusp form.

Fourier coefficients
If Sp (2, N) = X50_alm, A) Mz then,

r(m A)—ﬂa (m)+a(m, )
RNV NT R
Sk
Eg

Another way of analyzing the asymptotic behavior
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Another way of analyzing the asymptotic behavior

Expression of the theta series Asymptotics
For a 2k-dimensional even unimodular lattice, the Asymptotic analysis gives
Fourier decomposition gives
— k-1
o ‘ O j—1(m) —O(mk J
OA(@ = E@+Sp(zN) = Y. rim A) &7 amp) = O(mg)
m=0

where Sy (z,A) is a cusp form.

Fourier coefficients
If Sp (2, N) = X50_alm, A) Mz then,

r(m A)—ﬂa (m)+a(m, )
RNV NT R
Sk
Eg
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Another way of analyzing the asymptotic behavior

Expression of the theta series Asymptotics
For a 2k-dimensional even unimodular lattice, the Asymptotic analysis gives
Fourier decomposition gives

Op_1(m) = O(mk_IJ

00 .
O = B+ Sz M) = 3, r(m ) Gimme e o(m§)
m=

where Sy (z,A) is a cusp form.

Conclusion

Coefficients of Ej. are asymptotic esti-
mates of the coefficients of ©,. The se-
crecy gain of any even unimodular lattice

Fourier coefficients
If Sp (2, N) = X50_alm, A) Mz then,

r(m,A) = ﬂﬂk_l(mHu(m,A) behaves like
C(OT (k) —
Ej Sk 19%16 (efn)

Ey(e7?7)
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@ The flatness factor
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Flatness Factor

Information Leakage
Let M be the transmitted secret message and Z” be the vector received by Eve. Then,

I(M;Z") < 2¢,,(0) (nR—1ogée,, (0))

2
( )
" 27'[0'2

where

2
Vol (A,,)
2no?

ep,(0) =

is the flatness factor of the lattice A ;.
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Flatness Factor

Information Leakage
Let M be the transmitted secret message and Z” be the vector received by Eve. Then,

I(M;Z") < 2¢,,(0) (nR—1ogée,, (0))

2
( )
" 27'[0'2

where

2
Vol (A,,)
2no?

ep,(0) =

is the flatness factor of the lattice A ;.

Remark
True definition of the flatness factor is

L \g e
ZteAn(Twz e 20°
EAH(U): max —-1].
xeV (Ap) 1/vol(Ay)
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Intuition

Figure : Sum of Gaussian Measures on the 27 lattice with 02 = 0.3 and 0 = 0.6
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Figure : Sum of Gaussian Measures on the 27 lattice with 02 = 0.3 and 0 = 0.6

Goal
Is it possible to obtain a vanishing flatness factor? For which values of 02
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The flatness factor

Asymptotics of the flatness factor

Flatness factor of an even unimodular lattice

For nlarge enough, randomly choose an even unimodular lattice A ;. Then, set y = oy}

(and k= %),

epp(0)

14

I

1
no?

y2ep, ) -1
VB -1

yk
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Asymptotics of the flatness factor

Flatness factor of an even unimodular lattice
For nlarge enough, randomly choose an even unimodular lattice A ;. Then, set y = %

7T0'2
(and k= %),

er, @) = y2O,,()-1
VR E(y) -1

yk

14

I

Strong secrecy for even unimodular lattices

We thus get
0 o%> ﬁ — strong secrecy
Ep,(0) o 1 Jzzﬁ

2L
0o 0°< 5

Lattices and Physical-Layer Security: A finite-dimensional analysis
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Construction A using Z
Let g be an integer. Then, Z/qZ is a finite field if g is a prime and a finite ring otherwise.
For a linear code ¢ of length n defined on Z/gZ, lattice A is given by

A=qz"+¢= | (2" +x).
XEEC

Lattices and Physical-Layer Security: A finite-dimensional analysis
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Construction A using Z
Let g be an integer. Then, Z/qZ is a finite field if g is a prime and a finite ring otherwise.
For a linear code ¢ of length n defined on Z/gZ, lattice A is given by

A=qz"+¢= | (2" +x).
XEEC

Construction of Dy
D, is obtained as

Dy =27*+(4,3,2)f, = 1+ DZ[I* +(2,1,2)F,

where (4,3,2)F, is the binary parity-check code.
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Construction

Construction A using Z
Let g be an integer. Then, Z/qZ is a finite field if g is a prime and a finite ring otherwise.
For a linear code ¢ of length n defined on Z/gZ, lattice A is given by

A=qz"+¢= | (qz" +x).

XEE
Construction of Dy Construction of Eg
D, is obtained as Eg is obtained as
Dy =27* +(4,3,2), = L+ DZ[I* + 2,1,2), B=22%+@4,95,= | (228 +x)

x€8,4)F,
where (4,3,2)F, is the binary parity-check code.

where (8,4,4)F, is the extended binary Hamming
code (7,4,3)F,-

Lattices and Physical-Layer Security: A finite-dimensional analysis V)
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Construction (quaternary)

Construction A of the Leech lattice
The Leech lattice can be obtained as

Aoy =477 +(24,12)7,

where (24,12)7, is the quaternary self-dual code obtained by extending the quaternary
cyclic Golay code over Z.

Lattices and Physical-Layer Security: A finite-dimensional analysis
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Construction (quaternary)

Construction A of the Leech lattice
The Leech lattice can be obtained as

Aoy =477 +(24,12)7,

where (24,12)7, is the quaternary self-dual code obtained by extending the quaternary
cyclic Golay code over Z.

Other constructions

Construction A can be generalized. Constructions B, C, D or E for instance. But one
can show that all these constructions are equivalent to construction A with a suitable
alphabet.

Lattices and Physical-Layer Security: A finite-dimensional analysis M
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w Constructions with codes
i

Binary construction A
20F T
10
?- 0 E———
£
E —  Binary
20 Nonbinary
~30kL
-15 1.0 -0.5 0.0 05 1.0
1
y=——(B)
2n0?

Figure : Even Unimodular Lattice in dimension 168:
binary vs general case
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Binary construction A
20F T
10
3 OY——r——
E
=l =D —  Binary
20 Nonbinary
~30kL
-15 ~1L0 -0.5 0.0 05 Lo
1
y=——(aB)
2n0?

Figure : Even Unimodular Lattice in dimension 168:
binary vs general case

Binary lattices: a set of negligible measure

’ 7F\\\
~2000
4000
e
g om0
~8000
10000

Figure : Binary Even Unimodular Lattice : How many
they are?
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